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Abstract: Conventional methods for block-based compressive sensing consider an equal number of samples for all blocks.
However, the sparsity order of blocks in natural images could be different and, therefore, a various number of samples could be
required for their reconstruction. In this study, the authors propose an adaptive block-based compressive sensing scheme,
which collects a different number of samples from each block. The authors show that by adapting the sampling rate, in addition
to reducing the whole required number of measurements, the reconstruction performance would be improved, simultaneously.
Simulation results verify the effectiveness of the proposed scheme, especially for multi-level pixel value images like Mondrian
test image.

1 Introduction
The high Nyquist sampling rate in the most of the important and
emerging applications of multidimensional signals such as multi-
view imaging, hyperspectral imaging and distributed systems, is
not desirable. However, many natural signals (e.g. image and video
signals) exhibit sparsity features in some properly transformed
domain that can be exploited to reduce the required number of
samples for reconstruction. Compressive sensing (CS) [1–4] is an
emerging technique that benefits from sparsity as a side
information. CS directly measures the part of the sparse signals
which have information. Hence, the acquisition and compression
steps are integrated and signals can be reconstructed with far fewer
samples.

Multidimensional signals are usually recast as one-dimensional
(1D) vectors and then 1D CS is applied to the result. In spite of
sub-Nyquist sampling rate, the required number of measurements
for such signals could be still high in CS. There are also some
disadvantages in converting a multidimensional signal to very long
1D vectors: (i) inefficient use of the existed structure in all of the
signal dimensions because of removing spatial correlation; (ii)
huge memory requirement to store the large-size measurement
matrices; (iii) complicated construction of sparsifying bases; (iv)
computationally expensive reconstruction process.

The idea of block-based CS (BCS) is to overcome some of
these challenges [5–7]. Furthermore, the use of Kronecker product
matrices in CS is proposed to efficiently model the existed
structure in all dimensions of the signal [8, 9]. Moreover,
generalised tensor CS (GTCS) is another approach which preserves
the intrinsic structure of the tensor data [10]. However, the
Kronecker CS and the GTCS approaches are computationally
complex compared with multidimensional approaches based on
BCS.

To start our definition, three important parameters should be
defined: The length of the original signal is assumed to be N, the
number of measurement samples of the original signal is denoted
by M and the sparsity order of the original signal is considered as k.
Measurement matrices satisfy restricted isometry property
constraint with high probability if the number of measurements
was, at least, equal to M = 𝒪 klog N /k , where N is the length of
the signal and k ≪ N represents the order of the sparsity [3]. Hence,
a priori knowledge about the sparsity order of input images is
needed to calculate the required number of measurements. Since a
priori knowledge is not available, in practice, the upper bound on
sparsity order is used. However, the necessary number of samples

might be smaller than the obtained upper bound. In applications
like magnetic resonance imaging in which the acquisition process
is time consuming and expensive, reducing the required samples
for reconstruction, as much as possible is of great importance. With
this aim, there is an alternative sequential method for CS which
continues to get measurements until reconstruction error becomes
smaller than the predefined threshold [11]. However, since this
approach solves an optimisation problem when each new
measurement is acquired, it has high computational complexity
compared with non-sequential approaches. Hence, finding an
approach that uses the lower number of measurements with low
computational complexity for reconstruction is of great interest.

In the BCS approach, the image is split into the smaller blocks
and the required number of samples for reconstruction is assumed
to be equal for all blocks. We know that the sparsity order of each
block determines the required number of samples for
reconstruction. Due to the different sparsity order of blocks in
natural images, assuming a distinct number of samples for each
block could be more efficient. In this way, the existed structure of
sparsity in the image would be better used.

Furthermore, compressible signals such as natural images are
not exactly sparse and, in this case, zero norm may not be a
desirable measure of sparsity. Hence, a better sparsity measure is
needed. This measure should select enough significant coefficients
as a sparsity order and can be estimated from a little number of
linear measurements. Numerical sparsity is one of these efficient
sparsity measures which is introduced in [12]. Moreover, in [13],
some other sparsity measures like Gini index are introduced.

In a nutshell, our contributions in this paper are twofold:

• New adaptive BCS approach: In this paper, our aim is to reduce
the number of samples as much as possible. Natural images,
when partitioned into blocks, have different sparsity pattern in
each block. Therefore, we propose to set the size of the sensing
matrix for each block based on sparsity order of the block itself
and not based on sparsity order of the whole image. With this
adaptive selection of a number of samples for each block, we
will show that the whole number of samples would be allocated
efficiently in blocks. If one block needs more (less) samples, we
assign that block more (less) samples and with this simple idea,
we will reach to better results.

• Comparing results of different sparsity measures for our
proposed adaptive BCS approach: Since zero norm is not a good
measure of the compressible signals sparsity, it is most
important to find efficient sparsity measure for them. In this
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paper, we compare the performance of our proposed BCS
approach using two popular sparsity measures: i.e. numerical
sparsity and Gini index.

Note that compared with BCS, our approach should have an initial
step as the estimation of sparsity order for each block. This could
add computational complexity to our approach, however, in this
paper, the assumption of awareness about the sparsity order (e.g.
numerical sparsity, Gini index) of images is used. The estimation
error of sparsity measure can adversely affect the performance of
our proposed approach. In future, we will try to find a sparsity
measure that can be estimated by a low number of measurements.
We will also develop an efficient estimation approaches with lower
estimation error.

The rest of this paper is organised as follows. Section 2
describes BCS. Section 3 presents motivation of our work and
explains our proposed adaptive BCS scheme. In Section 4, we have
evaluated the performance of sparsity-aware adaptive BCS
approach with some simulations. Finally, Section 5 concludes the
paper.

2 Block-based CS

Consider an image x ∈ ℝNr × Nc which is partitioned into B × B
blocks. Let xj denote jth block ( j = 1, …, L, where L = (N /B2) is
the number of blocks with N = NrNc) of input image x through
raster scanning. In BCS, all blocks are sampled with same
measurement matrix ΦB. Therefore, the sampled measurements
vector can be written as y j = ΦBx j

vec, where x j
vec is the vectorised

version of xj and ΦB denotes the MB × NB orthonormal
measurement matrix with NB = B2 and MB = ⌊(M /N)B2⌋, where M
is the required number of measurements for reconstruction of the
whole image. Also, we assume that x j

vec is sparse in some proper
transform domain like discrete cosine transform (DCT), i.e.
x j

vec = ΨBs j
vec, where s j

vec is the sparse representation of the x j
vec

and ΨB is sparsifying basis of each block. Hence, the global
measurement matrix Φ and consequently the global sparsifying
basis Ψ can be written as follows:

Φ =

ΦB 0 … 0
0 ΦB … 0
⋮ ⋮ ⋱ ⋮
0 0 … ΦB

(1)

Ψ =

ΨB 0 … 0
0 ΨB … 0
⋮ ⋮ ⋱ ⋮
0 0 … ΨB

(2)

Comparing the measurement matrix for each block ΦB with
global measurement matrix Φ shows that the size of the matrix that
should be stored is greatly decreased. Besides, the encoder does not
need to wait until the entire image is measured. In fact, choosing
the proper size of blocks is most important and it determines the
computational complexity of reconstruction of each block.
However, one unpleasant consequence of using BCS is the
appearance of blocking artefact which degrades the performance
and should be avoided. Due to the blocking artefact appearance,
the size of the blocks could not be assumed to be much smaller.

To speed up the reconstruction process, we use the smoothed
projected Landweber (SPL) approach [6]. In addition, Wiener filter
is applied to remove blocking artefacts. Similar to [6], we call the
whole acquisition and reconstruction process BCS-SPL hereafter.

3 Proposed sparsity-aware adaptive BCS

3.1 Designing structurally sensing matrix

Block diagonal structure of measurement matrix in BCS is more
efficient compared with other popular approaches. Hence, this
brings to mind the question that are there other structures that can
yield better performance than block diagonal structure? In fact, the
answer is yes, but, finding the structurally optimal sensing matrix
has still not been answered. In this section, our aim is to design
structurally efficient sensing matrix. The designed sensing matrix
in (1), which originally proposed in [5], has assumed the equal
number of samples for each block which is the result of equal
sparsity order assumption for each block. However, natural images
have different sparsity pattern in each block. Hence, we first
manually generate a test image like Fig. 1a which the sparsity
order of it is known already. Therefore, we could investigate the
performance of our proposed approach on this test image. 

Let us explain our proposed approach. We have used the same
approach in [6] with a difference in designing sensing matrix for
each block. Contradictory to [5, 6] we set the size of sensing matrix
for each block (ΦB) based on the sparsity order of the block itself.
Mathematically, we replace the sensing matrix of each block (ΦB)
with ΦBℓ

 for ℓ  = 1, …, L which ΦBℓ
 is an MBℓ

× NB orthonormal

measurement matrix with MBℓ
= ckBℓ

log NB/kBℓ
 for some

constant c, where kBℓ
 is the sparsity order of ℓth block

Φ =

ΦB1
0 … 0

0 ΦB2
… 0

⋮ ⋮ ⋱ ⋮
0 0 … ΦBL

(3)

Ψ =

ΨB1
0 … 0

0 ΨB2
… 0

⋮ ⋮ ⋱ ⋮
0 0 … ΨBL

(4)

Fig. 1a shows an image of size 128 × 128 which is 320 sparse.
We have partitioned this image into blocks with size 32 × 32.
Fig. 1b represents sparsity order of each block and the required
number of measurements (MB = ckBlog NB/kB  with c = 2 [12]) for
reconstructing the each block. Figs. 1c and d show the
reconstructed image with BCS-SPL approach [6] and the proposed
sparsity-aware adaptive BCS-SPL approach which uses the
mentioned number of measurements in Fig. 1b, respectively.
Conventional block-based approaches assign fixed and an equal
number of measurements for all blocks. In this case, it is probable
that for each block the assigned number of samples be low or high.
Therefore, the sampling rate for each block should be chosen
adaptively. Comparing the proposed approach with the
conventional BCS-SPL approach, we find that it is possible to
achieve better performance with an adaptive selection of sampling
rate of each block even using the lower number of measurements.
In other words, the number of measurements for each block was
assigned more efficiently. Moreover, it could be seen from this
figure that the visual quality of the blocks with higher sparsity
order in our proposed approach is better than the conventional
approach, however, as we assign a lower number of samples for
blocks with lower sparsity order, the visual quality of these blocks
become lower than conventional approach. In this case, may be it is
needed to consider a lower bound for the number of measurements
relative to the block size or even the quality of the original block.
In the future, we will investigate this case.

3.2 Different measures of sparsity

As we mentioned earlier, compressible signals are approximately
sparse and zero norm is not a good measure for sparsity order of
them. For real images which are compressible in some transform
basis, we should know the sparsity order of each block to choose
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the correct number of measurements for each block. Therefore, we
need an efficient sparsity measure which should select enough
significant coefficients as a sparsity order. Consider a non-zero
signal vector x ∈ ℝN, where N denotes the signal size. Numerical
sparsity is one of the mostly used sparsity order measures that is
introduced in [12] as follows:

S x =
x

1

2

x
2

2 (5)

which is the lower bound on zero norm for all non-zero x.
Furthermore, some sparsity measures were introduced in [13]. It is
proved that between the different sparsity measures, Gini index is
the only measure that has all of the favourable properties defined in
[13]. Hence, let us introduce Gini index: given a vector
x = x1 x2 … xN , we order from smallest to largest,
x 1 ≤ x 2 ≤ ⋯ ≤ x N , where 1 , 2 , …, N  are the new indices
after the sorting operation. The Gini index is given by

Gini x = 1 − 2 ∑
j = 1

N x j

x
1

N − j + 0.5
N (6)

We should mention that the value of Gini index does not give us
exact sparsity order, but it is a normalised index between 0 (least
sparse) and 1 (most sparse) that is favourite for our adaptive
allocation of samples between blocks.

In summary, the number of samples is assigned to each block
based on Table 1 for different sparsity measures. As can be seen
from this table, the way that we have assigned the samples to
blocks for Gini index is quite different from numerical sparsity.
Since Gini index did not give us the exact sparsity order (k), in this
case, we have assigned the number of measurements for each block
proportional to Gini index of each block itself and not based on the
required number of measurements for reconstruction. 

4 Simulation results
In this section, we have provided extensive simulations to
demonstrate the effectiveness of knowledge about sparsity order of
blocks and adaptively allocation of a number of the measurements
to blocks based on them. We have used DCT as a sparsifying basis
for images. Figs. 2 and 3 compare the average peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) [14] of different test
images such as Mondrian (512 × 512), Tile roof (512 × 512), Clock
(256 × 256), Lenna (512 × 512), Barbara (512 × 512) and
Cameraman (256 × 256) versus required number of measurements
for 50 independent trials, respectively. In these figures, the block
size is assumed to be 32 × 32. We choose Mondrian, Tile roof and
Clock test images, because of multi-level pixel value nature of

Fig. 1  Original image and reconstructed images
(a) Original image (K = 320, N = 128 × 128), (b) Sparsity order and number of measurement considered for reconstruction in each block, (c) Reconstructed image, BCS-SPL [6]
(PSNR = 21.25 dB and M = 2520), (d) Reconstructed image, sparsity-aware adaptive BCS-SPL (PSNR = 22.9 dB and M = 2320)

 

Table 1 Number of samples allocated for each block
Conventional BCS Proposed approach with numerical sparsity Proposed approach with Gini index

MB = 1
L × M

MBl
=

kBl
log NB/kBl

∑ j = 1
L kB j

log NB/kB j

× M MBl
=

1 − Gini xl

∑ j = 1
L 1 − Gini x j

× M
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these test images, which we expect the better result for this type of
images for our proposed approach. As we can see, the performance
of the proposed approach is better than the conventional block-
based scheme in terms of PSNR and SSIM. Also, compared with
[5], we have reached the PSNR = 39.5 dB at M/N = 0.25 for
Mondrian test image, which is 3 dB higher than the best result of
[5] at the same measurement rate. Hence, designing structurally
efficient sensing matrix could greatly improve the performance. 

To show that why our proposed sparsity-aware adaptive BCS-
SPL approach is better for the Mondrian, Tile roof and Clock test
images, we compare their self-similarity. If there exists self-
similarity in the image, in other words the image has the same
texture on the entire image, then our proposed approach can always
achieve better performance even using low number of
measurements. To investigate this property, we divide the image
into blocks (with size B × B) and compute their covariance matrices
and then its B eigen-blocks. Now all blocks could project to these
eigen-blocks and provide B × 1 vector. If these projected vectors
are correlated or similar, then it could be resulted that all blocks
have the same texture and then their sparsity levels are close to
each other. If these projected vectors are not similar, these blocks
have different texture and hence, their sparsity levels are more
different. We compute the projected vector's entropy to compare,
but this comparison could be done in different forms. Fig. 4 shows
the self-similarity for the different test images. As can be seen from
this figure, there exists more similar blocks in the Mondrian, Tile
roof and Clock test images compared with the Lenna, Barbara and
Cameraman test images. 

It is also observed that the performance of the proposed
approach using Gini index as a sparsity measure is always better
than the conventional BCS. Our proposed approach using
numerical sparsity is the best approach for multi-level pixel value
images like Mondrian, Clock and Tile roof test images; meanwhile,
this is true for Lenna, Barbara and Cameraman test images just in
case that the sampling ratio is higher than 0.2. This is because of
the logarithmic nature of the required number of samples. We have

also compared the required number of samples for each block for
different approaches in Fig. 5. Consider the first row of this figure,
i.e. the Mondrian, Tile roof and Clock test images which have more
similar blocks. As can be seen from this figure, the required
number of measurements for each block for our proposed approach
using numerical sparsity and Gini index are not changed a lot from
one block to another one (because more similar blocks exist in
these images). Now, consider the second row of Fig. 5, i.e. the
Lenna, Barbara and Cameraman test images which have less
similar blocks. In this case, the required number of measurements
for each block using our proposed approach with numerical
sparsity is changed a lot. It is necessary to mention that, since Gini
index is a normalised sparsity measure index and does not have a
logarithmic nature in allocation of measurements, hence, the
required number of measurements for each block is not changed a
lot for this case. As a result, for the images that have less similar
blocks, when the number of available measurements is small, we
could not provide exact required number of measurements for
some blocks in our proposed approach using numerical sparsity. 

Finally, in order to show the impact of block size (B) on the
performance of our proposed approach, the PSNR versus block
size for fixed number of measurements is plotted in Fig. 6. As
mentioned before, one unpleasant consequence of using BCS is the
appearance of blocking artefact which degrades the performance
and should be avoided. Therefore, using small-size blocks, the
number of blocks in the original image increase and this intensifies
the blocking artefacts. Hence, as expected, it is observed that the
performance is better for large-size blocks compared with smaller
one. 

5 Conclusions and future work
In this paper, we proposed an adaptive BCS scheme. First, we
showed that the sparsity order of each block in an image could be
different. As a result, the required number of measurements for
each block would be different. Hence, we have selected a distinct

Fig. 2  PSNR versus normalised measurements for different test images
(a) Mondrian, (b) Tile roof, (c) Clock, (d) Lenna, (e) Barbara, (f) Cameraman
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sampling rate for each block. Then, we compared the performance
of our proposed approach for two popular sparsity measures, i.e.
numerical sparsity and Gini index and the superiority of numerical
sparsity was shown. Simulation results verified the efficiency of
the proposed scheme. Finally, there are several lines of research
arising from this work which include finding sparsity measures that
could be estimated from low number of measurements and work
well with all input images. Moreover, the question of finding the
structurally optimal sensing matrix has still not been answered.

6 Acknowledgment
The authors thank the anonymous reviewers and the editor for their
insightful comments and suggestions to improve the quality of the
paper.

Fig. 3  SSIM versus normalised measurements for different test images
(a) Mondrian, (b) Tile roof, (c) Clock, (d) Lenna, (e) Barbara, (f) Cameraman
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Fig. 4  Self-similarity for different test images
(a) Mondrian, (b) Tile roof, (c) Clock, (d) Lenna, (e) Barbara, (f) Cameraman
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Fig. 5  Required number of measurements for each block when M/N = 0.1 for different test images
(a) Mondrian, (b) Tile roof, (c) Clock, (d) Lenna, (e) Barbara, (f) Cameraman

 

Fig. 6  PSNR versus block size for Barbara test image (M/N = 0.3)
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