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Abstract—We consider the problem of anomaly detection in
network traffic. It is a challenging problem because of high-
dimensional and noisy nature of network traffic. A popularly used
technique is subspace analysis. In particular, subspace analysis
aims to separate the high-dimensional space of traffic signals
into disjoint subspaces corresponding to normal and anomalous
network conditions. Principal component analysis (PCA) and its
improvements have been applied for this analysis. In this work,
we take a different approach to determine the subspaces, and pro-
pose to capture the essence of the data using the eigenvectors of
graph Laplacian, which we refer as Laplacian components (LCs).
Our main contribution is to propose a regression framework to
compute LCs followed by its application in anomaly detection.
This framework provides much flexibility in incorporating differ-
ent properties into the LCs, notably LCs with sparse loadings,
which we exploit in detail. In other words, our contribution
is a new framework to compute the graph Fourier transform
(GFT). The proposed framework enables sparse loadings and
potentially other properties to be incorporated into the analysis
components of GFT to suit different tasks. Furthermore, different
from previous work that uses a sample graph to preserve local
structure, we advocate modeling with a dual-input feature graph
that encodes the correlation of the time series data and prior
information. Therefore, the proposed model can readily incor-
porate the ‘physics’ of some applications as prior information
to improve the analysis. We perform experiments on volume
anomaly detection using three real datasets. We demonstrate
that the proposed model can correctly uncover the essential low-
dimensional principal subspace containing the normal Internet
traffic and achieve outstanding detection performance.

Index Terms—Network Anomaly Detection, Graph Signal
Processing, Graph Fourier Transform, Dimensionality Reduction,
Graph Laplacian, Sparse Loadings

I. INTRODUCTION

Network traffic anomalies are considered as unusual but
significant changes present in network traffic [S)]. Example
includes both the legitimate activities such as flash crowds,
sudden changes in customer demand, and illegitimate activities
such as port scans, distributed denial-of-service (DDoS), link
flooding attack [6]. Very often, the collected data used for
network anomaly detection is huge, high-dimensional, noisy
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and grossly distorted. Therefore, processing and analyzing such
massive data in time-critical environment poses unprecedented
challenges. We propose to address anomaly detection in massive
data traffic by exploiting recent discoveries in high-dimensional
graph signal analysis [7].

Determining anomalies in network data streams has attracted
a significant amount of research efforts [8]], [9l], [10], [L1],
[12], [13], [14]. Mainly, there exist two paths of work for
network anomaly detection: signature-based and non-signature-
based detection. The second approach is useful for unknown
threat and anomaly as it does not require any prior knowledge
about the anomalies. In the domain of non-signature-based
detection, subspace analysis is a popular approach that aims to
partition the high-dimensional traffic signal space into disjoint
subspaces corresponding to the normal and anomalous network
conditions [§]], [10]. One of the most critical requirements of
subspace analysis is to uncover the essential low-dimensional
normal traffic subspace from the noisy and high-dimensional
traffic. Many spectral techniques such as PCA have been
proposed to address this dimensionality analysis problem. Let
X = [X1,...,Xpn] € RP*™ be the high-dimensional traffic
measurement. In particular, X consists of n measurements of
dimensionality p (In our experiment, X consists of measure-
ments in n successive time intervals; each measurement consists
of traffic statistics of p links of the network). The classical
PCA (Model 1 in Table [l) finds the projection Q7 € RF*™ of
X on a k-dimensional (k < p) linear space characterized by
an orthogonal basis V € RP**_ The product VQ7 is known
as the low-rank approximation L € RP*" of X. The clustering
or subspace analysis can then be performed on the L.

It is observed that, in many cases, low-dimensional data
follows certain structures which are hidden in the original
data. The performance of different applications such as dimen-
sionality reduction, clustering, and anomaly detection could be
improved if we leverage that structures in the models. Therefore,
there is a trend to improve the performance of PCA by utilizing
the hidden structure in a form of graph [15], [L6], [17], [L8],
[L9], [, [21, 1200, [210, (30, [22], [23]. These works mainly
consider the graph structure based on sample similarity. Few
of them such as [[16] considered feature similarity along with
sample similarity graph.

A. Focus of this work

The assumption in most of the graph-based models is
that the data is “smooth” on the underlying graph, and
they use the corresponding graph Laplacian to impose the
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TABLE I: A comparison on the properties of classical PCA, RPCA, and various recent graph-based PCA models [11, [2], [3]. ||-||x, ||-II, ||-]l#
and ||.||« denote the l1, l2, Frobenious, and nuclear norm, respectively. d,, 1,72 are the weighting constants. M is the sparse matrix. In

our proposed LCA and SLCA, S = {s1,...

,Sm}T is am x p matrix where s; = {s;1,...

,8ip}, and ST'S is the p x p Laplacian matrix

of the dual-input feature graph. G is the graph structure representation of prior information. F» represents the weight matrix computation

function. b is the 4t column vector, and the Laplacian components V = B, xx = {b1,...,bi}, k <p.
# | Model Objective Constraints Parameter Graph on
samples| features| ‘physics’
1 | pca wia X -VvQT|% vIiv =1 k X X x
2 | RPCA {] min LT+ 3MT X=L+M ) X X X
3 | RPCAG 2] min [ L[|, + 8[|Ml|1 + tr(Lo,LT) X=L+M 8,71 v X x
4 | FRPCAG [3] min [|X —Ljx +m tr(L®;LT) + 72 tr(LT®;L) 1,72 v v X
5 | Geeam mia X - VQTTF + 7 r(Q79.Q) QTQ-1 B | | x| x
6 | LCA (this work) [ min 337, [|s; —ABTs [Py, b, [% Fo(X,G) = @4 | ATA=Toxx | kv x v v
7 | SLCA(this min 377 [ls; — ABTs;[[7 + 9 T [0, [7 + 35, 6;[[bslln | STS =@y kv, 6
work) AB
— . . .
" Traffic in flow #50 (Link:-14) our approach takes the view of signal reconstruction of the
2 ‘ ‘ ‘ ‘ ‘ ‘ normal traffic, which is assumed to be graph-smooth. Our main
é..ﬁvw\ P AN contribution is to propose a regression framework to compute
200 400 600 800 1000 1200 1400 1600 1800 2000 these eigenvectors which allows us to introduce different
,x10" Traffic in flow #3 (Link:2,14.15) properties on the eigenvectors, such as sparse loadings in the
1t . components, leading to improved detection accuracy. On the
O 0 400 600 800 1000 1200 1400 1600 1800 2000 contrary, eigedecomposition-based design does not have such
x 10° Traffic in flow #67 (Link:19,9) flexibility to add properties on eigenvectors. In other words, our
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1L ] contribution is an improved method for graph Fourier transform
0 ‘ ‘ I ‘ ‘ : (GFT) that enables different properties to be included in the
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Time GFT analysis components. In addition, in many cases, the
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(a) Amount of traffic in an origin-destination flow. low—dlmenm.onal. data follows t.he. physics” of the proble':m
at hand which is known a priori. Examples of such prior
10 Traffic on link #14 (node | to K) kl.lowledge could be the physical proximity of the sensors in
10 ; ; ; ; ; ‘ ‘ : : wireless sensor networks (WSNs) [27] or the magnetometers in
ZWWM Magnetoencephalography (MEG) for brain imaging [28]], [29],
200 400 600 800 1000 1200 1400 1600 1800 2000 or the network routing topology in Internet traffic analysis
oot Trafficonlink#17 (odeKtol) [8]. A standard way to incorporate the knowledge of such

o
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(b) Amount of traffic in a link

Fig. 1: Flow and link level measurements of traffic in the Abilene
network. Note that the vertical axes have different scales, and the
flow measurements are small compared to link measurements.

smoothness constraints during the recovery of the low-rank
approximation of data. Specifically, they use spectral graph
regularization in the optimization problems to impose graph
smoothness [1]], [2], [3]. On the other hand, inspired by the
recent graph signal processing [7]], [24]], [25], [26], our work
takes a different approach and imposes graph smoothness
using the first k eigenvectors of the feature graph Laplacian,
where k < p for p-dimensional input data. Note that, almost
all state-of-the-art methods computed the eigenvectors from
“sample graph Laplacian”, whereas this paper compute the
same from “feature graph Laplacian”. As will be discussed,

information is by using a graph. Such prior information could
be useful when the data samples are noisy. This knowledge
motivated us to investigate a mechanism to incorporate prior
information in the process of recovering low-rank data matrix.
Specifically, we focus on the graph-based modified PCA with
prior information for more accurate subspace identification
followed by its application in detection of network traffic
anomaly such as volume anomaly [8]]. Note that the application
of graph signal processing for network traffic analysis is new
as per our knowledge. A preliminary version of this method
has been published in [30]]. In this version, we extended our
analysis and added new experimental results with few more
datasets.

At this juncture, it is pertinent to explain the volume anomaly
briefly. The volume anomaly spans over multiple links in a
network. It is referred to a sudden positive or negative change
in amount of traffic of an origin-destination (OD) flow at some
specific time while the other flows carry average amount of
traffic throughout the period. Figure [I(a)] shows an example
of anomalous flow (flow #50) and two other normal flows
(flow #3 and #67) captured from the Abilene network (more
discussion about the Abilene network is given in Sections [[V]
and [V). The occurrence of such anomalous event is visible in
flow-level data as shown in Figure [I(a)] Our objective is to
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TABLE II: Summary of notations

Notation Description

[I-ll# Matrix Frobenious norm

111+ Matrix nuclear norm

-1 Matrix [; norm

-1l Matrix l2 norm

n Number of data samples

p Number of features in each sample

k Reduced dimension (k < p)

X € RPx" Data matrix

X Denote a column vector in X

L € RPX7™ Low-rank approximation of X

é Sparsity penalty

¥ Ridge penalty

Y1 Graph penalty on sample graph

Y2 Graph penalty on feature graph

Fi1 Graph conversion function

F2 Weight matrix computation function for a graph

Gs Sample graph

Gy Feature graph

Gr Network link graph

g Source graph or dual-input feature graph

o, € RMX™ Laplacian for sample graph

o € RPXP Laplacian for feature graph

Dgqp € RPXP Laplacian for dual-input feature graph (source
graph)

Vv Eigenvectors of Graph Laplacian

D Degree matrix of an weighted graph

\%% Weight matrix of an weighted graph

v Set of vertices in graph

& Set of edges in a graph

S It is a matrix which satisfies STS = Dyr

identify the time-stamps of anomalous events using the link-
level measurements. Note that link-level measurements can be
easily captured from networks, and this approach is scalable for
network-wide monitoring. We do not use flow-level statistics
as in previous work [8]]. On the other hand, from the Figure
we observe that the occurrence of anomalous event is
not prominently visible using link-level measurements of the
links #14, #17 and #35. The amount of traffic in those links at
normal time are similar to that at abnormal time because of the
superposition of normal and abnormal flows passing through
the links, even though the link #14 is directly associated with
the anomalous flow #50 according to the Abilene network.
Therefore, it is challenging to determine the existence of
network anomaly from link-level traffic measurements.

B. Contribution

Let ®, € R™" and ®; € RP*? be the graph Laplacian
on the sample graph G and the feature graph G of X,
respectively. The graph G connects the different samples of
X (columns of X) and the graph Gy connects the features of
X (rows of X). In this paper, we propose a subspace analysis
for detecting volume anomaly. We apply the eigenvectors of
the graph Laplacian @4 € RP*? of a dual-input feature graph.
The dual-input feature graph incorporates both the data matrix
and the prior information to encode the correlation between the
features (we also name it as a source graph because it encodes
the correlation between the data sources). As will be discussed,
the prior information in our application is the network topology.
Note that the subscripts ‘f” and ‘df’ with ® indicate default
feature graph (incorporates only the information from data)
and dual-input feature graph, respectively (more discussion in

Sections [[TI] and [TV)). In particular, for p-dimensional data that
can be defined on the vertices of a graph G (|V| = p), we use
the first & smooth eigenvectors {vy,..., v} of @4 to define
the intrinsic k-dimensional subspace corresponding to normal
network conditions. Our approach uses a different mechanism
to impose the graph smoothness constraint: instead of using
spectral graph regularization and relying on 71,7 to control
the graph smoothness (as in Model 3 to 5 in Table [I), we
control the graph smoothness directly via the selection of &
smooth eigenvectors for reconstruction of samples of X.

Moreover, as our main contribution, we propose to use
a regression-type optimization framework to compute the
orthogonal bases {v;} from the normalized graph Laplacian
® 4. We name {v;} as Laplacian components (LCs) and the
regression-based approach as Laplacian component analysis
(LCA). LCA produces the same resulting vectors as direct
eigendecomposition of ®4¢. On the other hand, LCA provides
flexibility to achieve different properties of the resulting LCs.
In particular, in this work, we exploit the use of lasso penalty
in the baseline LCA to obtain LCs with sparse loadings. We
validate that this sparse LCA can better model the class of
signals that are smooth with respect to the underlying graph
(e.g., link-level traffic statistics in our application), leading to
better detection performance.

We summarize our contributions as follows:

o We propose a new framework namely Laplacian Compo-
nent Analysis (LCA). LCA performs regression on the
structure of the graph Laplacian. It can be viewed as an
extension of PCA with graph smoothness constraints.

o« We present a method to include additional attributes
(sparse loading) upon eigenvectors of the graph Laplacian
using the LCA framework. We name this method as sparse
LCA (SLCA).

e We design a network anomaly detection scheme by
introducing dual-input feature graph (i.e. source graph)
with (sparse) Laplacian component analysis.

C. Paper Organization

At the outset, we describe the notations used throughout the
paper in Table [} The rest of the paper is organized as follows.
In Section [l we present relevant related works reported in the
existing literature. We describe the proposed model followed
by its optimization solution in Section Section |[V]| describes
the graph construction method. The experimental setup for
performing evaluation is described in Section |V| followed by
performance evaluation and comparison with other benchmark
models in Section Finally, we conclude the paper in Section
with discussions about how this work can be extended in
the future.

II. RELATED WORK

The aim of this work is to detect anomalous traffic volumes
in a large network. The information sources are collected
from the network and are focused on both the components -
data and network, so that the robust and scalable detection
of network traffic anomaly can be performed. There exist
two major approaches for anomaly detection - signature-based
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and non-signature-based. We consider the non-signature-based
approach as it is advantageous for unknown anomaly and zero-
day attack [6]. We find a rich set of literature on network
traffic anomaly detection [S]], [31], [6], [32], [33], [341], [35],
(361, [37], [38]. Brauckhoff et al. [39] applied association rule
mining on the meta-data provided by histogram-based detectors
for detecting anomalous flows. However, the work is based
on the assumption that anomalies typically result in many
flows with similar characteristics which is not true always
[40]. Yut-Fong et al. [41] developed a non-parametric change
point detection and localization method for high-dimensional
network traffic data. However, their design is not robust with
different data streams generated from a network [40]]. Yang and
Zhou [42] used the manifold learning technique called locally
linear embedding (LLE) [43] with PCA for outlier detection.
However, this method is not promising as the original data
space is changed in the process and there is no mapping
provided from the new space to the old space. URCA [44]
searches for anomalous flows by iteratively eliminating subsets
of normal flows. However, the URCA is very costly to execute
in a network because of its repeated execution of anomaly
detector on different subsets of flows.

The present network anomaly detection schemes have
evolved to highly sophisticated levels and use many advanced
signal processing techniques. The emerging signal processing
techniques play a significant role to perform data mining on
massive amounts of collected data, and, ultimately, detect the
anomaly with much improved accuracy, reduced computational
and storage overheads. One of the essential requirements
for anomaly detection in high dimensional data space is to
reduce the effective dimension. Many spectral techniques such
as PCA have been proposed to address the dimensionality
reduction problem [45]. The classical PCA suffers from
several disadvantages, e.g., sensitive to outliers [16], [4], [27].
Therefore, many improvements over the classical PCA have
been proposed. Candes et al. [4]] proposed Robust PCA (RPCA,
Model 2 in Table [I) which is robust to outliers by directly
recovering the low-rank matrix L from the grossly corrupted
X. In this model, the M represents sparse matrix containing
error and ||.||« denotes the nuclear norm. Recently, there is
a trend to improve PCA by leveraging the hidden structure
of data matrix in the form of a graph for improving the
performance of various applications such as dimensionality
reduction, clustering, anomaly detection. These works consider
structure of feature similarity, sample similarity, and combina-
tion of both in the form of graphs. The graph Laplacian
PCA (GLPCA)[1](Model 5 in Table E[) considers implicit
structure among data samples for improving the accuracy of
clustering. The authors further proposed one robust version of
the GLPCA. Shahid et al. [2] proposed robust PCA on graph
(RPCAG) (Model 3 in Table |I) which can accurately learn
L in the presence of occlusion and missing pixel. Note that
GLPCA [1]] assumes the graph smoothness of the projected
data Q while RPCAG [2] assumes the graph smoothness of the
low-rank approximation L. These smoothness constraints are
used as the regularization. Considering the feature similarity
graph, Laplacian Lasso (LLasso) [16] proposed a network-
constrained regularization procedure in which the lasso penalty

4

is combined with the network penalty induced by Laplacian
matrix of the graph. Thereafter, different modifications of
the LLasso has been proposed such as graph-based elastic
net [46], and graph OSCAR [18]. Inspired by the two-way
graph regularization scheme [47], Shahid et al. [3] proposed
Fast RPCAG (FRPCAG) (Model 4 in Table [I) for faster and
better clustering. Several other techniques for dimensionality
reduction, such as [15], [48], [49] and [50], involve eigen-
decomposition of the graph Laplacian. In particular, LPP [[15]]
is a linear mapping that involves graph Laplacian and can be
seen as an alternative to PCA, similar to our work.

However, the framework and mechanism of our work
are different from LPP and previous graph based works.
Specifically, the LPP is geometrically motivated. Given a set
of n p-dimensional points x;, LPP aims to preserve local
structure of the n points. The structure is modelled by the
sample graph with n nodes and edge weights measure the
distance between x;. This is encoded by the n x n graph
Laplacian ®;. As will be discussed more, our approach instead
works with a different type of feature graph of p nodes namely
source-graph. This is motivated from a different angle: we
consider p correlated time series and x; is the p-dimensional
measurement at a time instant. The edge weights of the source-
graph encode the cross-correlation of the time series as well as
the relationship between nodes in the network structure which
is available a priori. In brief, our approach focuses on the p x p
graph Laplacian @, or @4 if prior information is incorporated.
Besides, the mechanisms are different. For LPP, the solution
is the set of eigenvectors of X®,X”. For our work, LCA
components are equivalent to the eigenvectors of ®g4r. We
do not perform eigen-decomposition. Instead, we propose to
regress on the structure of ®4 to compute the components.
Note that our work outperforms LPP, as will be discussed in
our experiment. In addition, Spectral Regression [17]] has been
proposed as a two-step more efficient approach to solve the
eigen-problem of a specific form. It is not applicable for our
eigen-problem. Also, our algorithm performs regression directly
on the structure of the Laplacian in a single step. Note that in
our application the graph connectivity can be readily obtained
(network topology). In other applications when connectivity
is unknown, our proposed regression framework can be used
with graph learning algorithms [S1]], [52].

In addition, our work is an improvement of the graph Fourier
transform (GFT). The LCA components computed from our
regression framework are the same as the analysis components
of an ordinary GFT computed from eigendecomposition.
Importantly, our regression framework enables other properties
to be included in the analysis components by using different
regularizations. In this work, we investigate in detail using the
lasso penalty to obtain components with sparse loadings, which
have been shown to be effective for anomaly detection [40].
Very recently, there are several works to improve GFT. However,
the motivation and approach of these works are significantly
different from our work: Sardellitti ef al. [53] and Shafipour et
al. [54] extend GFT for directed graphs. Magoarou et al. [53]]
investigate fast GFT. Girault et al. [S6] consider irregular-aware
GFT. On the other hand, our work investigates incorporating
different properties such as sparse loading into the GFT analysis
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components, so that they are effective for specific analysis tasks.

III. METHODOLOGY

In network traffic anomaly detection, it is desirable to have
the ability to distinguish abnormal traffic pattern from the
normal pattern. Lakhina et al. [8] uses PCA for distinguishing
normal and abnormal subspaces by constructing and separating
the principal axes into two sets corresponding to the subspaces.
The space spanned by the set of normal axes is considered as
normal subspace. In this work, we propose a more accurate
method for determining normal subspace, and, therefore, the
performance of anomaly detection increases. This section
describes the steps for finding out the principal axes followed
by their sparse approximation for computing more accurate
normal subspace.

A. Overview of Proposed Method

In brief, our proposed method is as follows:

GV, ) <« Fi(Prior Information) (1)
G(V,E,W,D) « Fp(G,X); X € RP*" )
Oy =I-D WD 2 3)

m k k
. T 2 2
i D s~ ABTs? 4 3107+ 3y
i= i= j=

s.t. ATA = Ik><lw STS = (I)df (4)

where B,y = [b1,...,by], and v and § are the tuning
parameters. At the outset, we describe the above method briefly
followed by their detail explanation in the following sub-
sections. The input to our method is the data X € RP*"
and prior information. In our application, X consists of
measurements in n successive time intervals; each measurement
consists of traffic statistics of p links/traffic measuring points
of the network. Alternatively, X can be viewed as p time series
with n samples. The time series are correlated and the cross-
correlation of the time series is encoded in the weights of the
underlying graph model. The output of our method is the set
of Laplacian Components obtained in B computed from ().

The step in shows that the available prior information
needs to be converted to an undirected graph structure G(V, &)
where V and £ are the set of vertices and edges, respectively.
This is done by designing a conversion function Fi(.). The
conversion process of prior information to a graph structure is
specific to application domain, and, therefore, we discuss with
graph construction method in Section Let us assume, we
have the graph G. We compute weight matrix W and degree
matrix D of the graph using both the graph structure and the
input data matrix, as mentioned in (2. Because of the use of
prior information graph G in the conversion function F5(.),
we describe its operation with graph construction method in
Section

After @), we have a simple, undirected, connected and
weighted graph G(V,£, W, D). The step in shows the
computation method of normalized graph Laplacian of graph
G followed by its conversion to S matrix which is, then, used
as input in the optimization framework shown in (4). Finally,

the computed k sparse LCs are {vy, ..., vy} = B, which are
used to define the low-rank approximation of X corresponding
to the normal subspace.

B. Regression Framework to Compute LCs

Unlike previous work using eigendecomposition [7], we
propose to use a regression-type optimization framework to
compute the eigenvectors from the graph Laplacian ®4;. As will
be discussed later, this allows us to impose different types of
constraints to achieve different properties of the resulting LCs,
e.g., sparse loadings. Specifically, since ®g4 is real, positive
semi-definite and diagonalizable, we can write ® 4 = STS for
some m X p matrix S. Note that we introduce S to illustrate our
mathematical formulation. In practice, our algorithm uses ® 4
directly, and there is no need to compute S, as will be discussed.
We apply the theorem from [57] to convert the computation of
eigenvectors into a regression problem. Specifically, suppose
we are considering the first k¥ LCs (vy,...,vy) of &g =
STS, with S = [s1,...,s,,]7. Let A,xx = [a1,...,a;] and
B,xx = [b1,...,bg]. For any v > 0, let

A A m k
_ : L To 12 2
(A,B)—argAgnn E ., Isi = AB7si]| +v§ jzll\byll
sit. ATA = Iy, STS = Oy 5)

where +y is a ridge penalty factor for each principal component
(PC). Using the result from [S57], we have l;j o v; for
7 = 1,2,...,k. Note that we are interested in the first k
principal components (i.e. LCs) of the Laplacian matrix, which
are different from PCs in [S7]. In particular, our interested
Laplacian components correspond to the smaller eigenvalues of
®,4r which include the zero eigenvalue. Note that the principal
components (PCs) corresponding to higher eigenvalues are
used for subspace analysis in PCA based approaches.

To illustrate the link between (3 and regression analysis,
note that when A is given, following [S7], it can be shown
that (5) becomes:

k k
arg min ijl |Sa; — Sb,||? + vzjzl Ib;|I12. (6)

Therefore, with Sa; being viewed as the (known) response
vector and b; the regression coefficients, @ is equivalent
to k independent ridge regression problems. We named the
formulation in (3)) as Laplacian component analysis (LCA).
It is pertinent to mention that, unlike Sparse PCA (SPCA)
in which data matrix X is used in regression formulation,
the LCA as well as the Sparce LCA (discussed in Section
does not directly use the data matrix X in regression.
Instead, the proposed models use the matrix S in optimization
problem formulation where STs = @4, the graph Laplacian
matrix. One example of S could be the incidence matrix which
is easy to obtain, but with dimension m X p, and m is the
number of edges which would be very large if the graph is
dense. Thus, it could be inefficient to work with S. In Section
we propose the solution method of (6) in which FISTA
algorithm [58]] is used to solve the “B given A” step. This
allows reformulation so that we do not need to work with S.
Rather, in the solver, we can directly use the Laplacin matrix
(I>df.
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C. Relation of Principal Subspace with Weight Matrix

Prior information such as network topology has influence on
correlated measurements and it is encoded in ®4; for extraction
of smooth component b; where j € [1,2,...,k]. When A is
given, we obtain b; after solving (6). We can rewrite (6] for
every b; as follows:

b, = arg min (a; — b;)"ST'S(
b

J

a; —b;) +7[bs|> (D

As we know the A matrix, the modified equation shows that
we need only S”'S for solving (6). Let b; = a; — b, and we
know that STS = ®4¢. Then, we further rewrite as follows:

bj = argbmin b;»chdfb;‘ + 'VHbj||2

win Y

r,s€[1,2,...,p]

wr,s [b3(r) = b ()] + by |

= arg min
b;

®)

Therefore, for a given A, b/jT<I>dfb; in forces the r-th and
s-th entries of a; — b; to have have similar values if w, , is
large.

D. Sparse LCA (SLCA)
The regression formulation in (5) is a flexible framework that

allows various enhancement of the baseline LCA. In particular,
to achieve LCs with sparse loadings, we add the lasso penalty

in (@):

(A,B) = arg min Z |s; — ABT's; |2 HZ b, |
+ij1 9 l1b;1
sit. ATA = Iy, S7S = Oy 9)

Note that different J; can be used for different LCs to promote
sparse loadings. To solve (), we use the alternating algorithm

proposed in [57] and solve: (i) B given A and (ii) A given B.

On the other hand, we propose to re-formulate the problem to
apply the popular fast iterative shrinkage thresholding algorithm
(FISTA) [58] to attack B given A efficiently. In particular,
following the method of conversion from (3} to (6), it can be
shown that (9) is equivalent to:

min Z ISa; — Sby]|? +WZ b +Z<5 [Ib; 2
Jj=1 Jj=1

s.t. A AZIka,S S =4 (10)

Moreover, if the first two terms are combined together, we
reach a simple version:

min Z 1Sa; — Sby|* + 25 b1

Jj=1
s.t. ATA:Ika,S S:(I)df

1, 5o ]
V3ilpxp 0pxp
We describe our proposed algorithm for B given A step
using FISTA in Algorithm [I} and the overall SLCA method in
Algorithm 2]

(1)

where S =

6

Algorithm 1 FISTA Algorithm for SLCA: (B given A)

1: Input: b}: initial random solution,
Nmaz» keep = 1.

2: while (7 < 9y4.) and (keep ==

3: Step 7: (n > 1) Compute

to =t1 =1, u,

) do

4 y1=b7+ (b= (b7 b)),

5: b;’“ = Ts,u (y" —2u87T (Sy” - Saj))
/T

o e

7 if “)‘Ibni;tﬁ < ¢ then

8: keep =0

9: Output: b;-7+1

Algorithm 2 Regression Framework of SLCA

1: Input: A' = [a], ...,
€, Itryaqe, keep = 1.

a}c] : Ordinary principal components,

2: while (¢ < I'trp,,,) and (keep == 1) do
3 Step ¢: (¢ > 1) Compute
. ¢ _ ¢ -1y
4 bl = FISTA(al,b5™), j=1,... .k
5 :[b{,...,bﬁ]
6: bl = ‘b —1,... .k
7: Take SVD of STSB‘ = UDVT.
8: Then AT =UVT
9: a§—|,| ji=1,..,k
10:if (|[Bf =B <€) then
11: keep =0

12: Output: B

In Algorithm ' 7,(.),; is a shrinkage operator which is de-
fined for any q € R" as follows: 7,(q); = (|g:| — ), sgn (g;).
The parameter € is used as a convergence threshold and 7,45
is used as a maximum iteration number for convergence. More-
over, the parameter p = i in which ¥ = 2,42 (ng) is the
Lipschitz constant of the first two terms in the objective function
in @]), where Aq. (-) denotes the maximum eigenvalue of
a matrix. Note that, in the Step 5 of the Algorithm |l1} we
need the following parameters: STS = ST'S + 41I,, and
STS = ST'S. Therefore, for solving the optimization problem,
we just need the STS = ®4. That is, there is no need to
decompose @y in practice: ®4p can be used directly in the
optimization. Note that the ridge penalty factor v should be
chosen as a small positive number and large values of §; gives
sparser solution. Note that the principal components (PCs)
corresponding to higher eigenvalues are used for subspace
analysis in PCA based approaches. However, in this LCA
based design, our interested Laplacian components (LCs) are
correspond to the smaller eigenvalues of (normalized) graph
Laplacian ® 4. In this case we observed that, we need to handle
the regression for LC corresponding to eigen value zero (b;)
separately from the other LCs corresponding to eigenvalues
greater than zero (b;, j = 2, ..., k). In particular, by has a much
smaller magnitude during the iterations in Algo. [2| comparing
to other LCs (note that normalization is performed in Algo.
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[2l Lines 6 and 9). If we use the same setup as in the ‘Sparse
PCA’ work, the regression tends to converge to the trivial
solution for by: a zero vector (the zero vector is a solution
to ®4b = Ab, A = 0, and is sparse), and we always end up
with a zero vector for b;. After investigation, we resolve to
use a separate and small threshold for b; when sparsifying the
LCs. This corresponds to using a separate (and small) lasso
regularization parameter for b;. This modification allows us to
regress a non-trivial sparse by (instead of a zero vector) which
is much more useful for subspace analysis. Therefore, in the
experiment part, we use two sparse penalty factor §; one for
the PC corresponding to the zero eigenvalue and one for the
other PCs. Finally, the k sparse LCs are {vy,...,vi} = B.

In the following sections, we further discuss: i) the difference
between previous work and our work, which imposes graph
smoothness using eigenvector reconstruction; ii) the benefit
to use dual-input feature graph (combined data and prior
information) instead of the default sample graph and feature
graph (without prior information); iii) the benefit of sparse
loading in imposing graph smoothness.

E. Graph Smoothness using Reconstruction of Eigenvectors

Recent improvements of PCA use spectral graph regular-
ization to enforce that the low-rank component is smooth on
certain graph (sample or feature) [2], [3l]. For example, [3l]
introduces ¢r(LT® ;L) in the minimization (Model 4 in Table
[[). Viewing the row vectors of L as n-dim signals that reside
on the feature graph (with p vertices), this spectral graph
regularization enforces the signals to change smoothly between
the connected vertices.

In this work, instead of using spectral graph regularization to
enforce smoothness, we directly impose the graph smoothness
using the first £ eigenvectors of the graph Laplacian (k < p
for p-dim data). Furthermore, we perform regression on the
structure of the Laplacian to induce sparse loadings on the
vectors.

Specifically, the eigenvectors with small eigenvalues are
smooth with respect to the underlying graph, i.e., changes are
small between the connected vertices. It is an application of
Courant-Fischer Formula for Laplacian [39], [7]]. In particular,
for a graph Laplacian ®, the k-th eigenvector is the minimizer
of:

min f10f =3 wi[f(0) = FO)I, (12)
i

with ||f|l2 = 1 and f being orthogonal to the first k —
1 eigenvectors. Thus the first k eigenvectors have small
i wiglf@) = f (4)]? and are graph smooth. Therefore, the
first k eigenvectors model a class of signals that are smooth
with respect to underlying graph. Reconstruction using the first
k eigenvectors imposes graph smoothness constraint.

F. Feature Graph with Prior information

Unlike sample graph which is used in most of the prior
works, we use feature graph with prior information, i.e., dual-
input feature graph, as shown in Equation (2). We perform
an experiment to quantify the improvement on our Abilene

Network dataset. In particular, our dual-input feature graph uses
two inputs - data and prior information, whereas the existing
works use data matrix only. Specifically, the prior information
is the known graph topology from which the data samples
(i.e. graph signals) are generated. Note that, the proposed
feature graph is not same as the standard feature graph used
by Shahid et al. [3]]. Therefore, we use the term ‘source graph’
for denoting our dual-input feature graph which describes the
correlation between data sources, i.e., features in X.

From the Abilene Network dataset, we consider three graph
Laplacian ®, ¢, and ®4 corresponding to sample, feature,
and source graphs, respectively. We compute the graphs of
®, and ¥ following the method in [3]: we connect each
sample/feature to its K nearest neighbors and use a Gaussian
function to compute the weight for connected vertices. We
discuss the construction of source graph in the later section and
compute ®4¢ using Equation E} We measure the smoothness
of the dataset on these graphs.

To measure the global smoothness of signals on the intrinsic
graphs, we compute the graph Laplacian quadratic value [7]],
[59]. For proper comparison, we propose to normalize them. In
particular, given the input dataset X, ,, for the sample graph
with ®,,.,,, we compute:

tr(XoXT)
p X (#W)

where #W denotes the number of non-zero weight in W. For
the feature and source graphs with ®,.,,, we compute:
tr(XT®X)

n X (#W)

Note that it is important to normalize the quadratic value
for proper comparison. In particular, for sample graph,
tr(X®XT) = Y w; ;|lx; — x;]|* which is summation of
px (#W) values. For feature and source graphs, tr(X7®X) =
> w; j|I%xi — %;||* which is summation of n x (#W) values.
Here x and x represent the row vector and the column vector
of X € RP*™, respectively.

With the above set up, we observed the following val-
ues: quad(X,®,) = 0.0414, quad(X,®;) = 0.1176,
quad(X, ®4) = 0.0335 for the Abilene Network dataset (more
information about the dataset is provided in the experimental
setup section). The results show that the input signals are
smoother on the proposed source-graph, which motivates us to
use source-graph in our proposed method. Note that the addition
of prior information could improve the performance of a model
as the dataset is smoother on the source-graph compared to the
default feature graph, based on their Laplacian quadratic values.
Further, there is no previous study in comparing these graph
models quantitatively for a given problem or dataset. In our
study, we use the graph smoothness concept, and specifically
the graph Laplacian quadratic value to decide the model for
the underlying graph (sample, feature or source graph model),
before the signal analysis.

quad(X, ®) = (13)

quad(X, ®) = (14)

G. Usefulness of Sparse Loading

As discussed, the first & eigenvectors of the graph Laplacian
model a class of signals that are smooth w.r.t. the underlying
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graph. In this section, we demonstrate the class of signals
modeled by the first k& sparse LCs is smoother than that by the
normal LCs. Specifically, we compute the “zero crossings” of
first k& components as signals on the graph [[7]. The count of
zero crossing for a graph signal is defined as the number of
edges connecting a vertex with a positive signal to another one
with a negative signal. For the Abilene dataset, we computed
the zero crossing for all the components generated by the
LCA and SLCA methods. Figure [2| represents the cumulative
number of zero crossing with increasing component index. It
is observed that, the sparse components are much smoother on
underlying graph compared to the normal components.

3000

2500
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1500

1000

500

Zero Crossing Count (cumulative)

0 10 20 30 40 50
Component Index

Fig. 2: Cumulative values of zero crossing as the number of component
increases.

IV. GRAPH CONSTRUCTION

In this work, we use dual-input feature graph i.e. source-
graph for graph embedding. In addition to dataset, we incorpo-
rate prior information about the sources of graph signals. In the
following, we describe the graph construction method for the
Abilene network dataset which is used extensively for network
anomaly detection experiments, e.g., [8], [60] and [61].

A. Graph Structure Representation of Prior Information

The proposed model leverages additional information avail-
able in the form of graph structure. For the Abilene dataset, we
have topology information of the network. We consider a graph
isomorphic to the Abilene network representing the network
routers as vertices and the communication links as edges in
the graph, respectively. Figure [3(a)] shows the network graph
G of the Abilene network. In this work with Abilene data, we
need a graph describing the relationship among the links in G
as the inputs for the SLCA method are the network’s link-level
measurements. Therefore, we compute another graph called
network link graph from the directed network graph using the
method described as follows.

For a directed and connected network graph G = (V,€)
with self-loop, the corresponding link graph G = (V',&')
is defined such that |V'| = |€|, with the value at a vertex in
V representing the volume measurement of a network link
in £. Moreover, there exists an undirected edge in G for
each pair of links in GG that shares a common end point which
makes it possible to flow data from one link to other; i.e.,

(b) Link graph G, for the highlighted part.

Fig. 3: Network graph G of the Abilene Network with link id (numbers
written beside the links) and corresponding data direction, and Link
graph G, corresponding to the marked (by highlighted eclipse) portion
of G only.

{(i,§) € €} & {Fv e Vi = vl = o] V[l = vl = o]}
where i = (vi,vl) € £, and j = (vi,vl) € £, v € V, vl €V,
vl € V, vJ € V. An example of corresponding link graph for
the specific portion marked by a highlighted eclipse in Figure
is shown in Figure We have shown a portion of
the link graph as the size of the full link graph is large. Note
that, the full step described here corresponds to function F;
in Equation [T}

B. Dual-Input Feature Graph

In this paper, we construct the dual-input feature graph
(source-graph G) using two characteristic parameters.

« First one is related to the Pearson correlation coefficient
(p) between the X; and X;, where X; and X; are the row
vectors of X € RP*™,

o The second characteristic parameter is related to minimum
distance (h) between two vertices in the graph G . For
the network dataset, we consider ‘hop count’ as distance
measure in Gy. For computing the shortest hop count
from one vertex to other in G, we use the Bellman-Ford
shortest path algorithm, and the weight of each edge in
graph G, is unity. It actually preserves the global structure
of a network indirectly.

We compute the source-graph G as follows: (i) The set of
vertices in source-graph is same as in G'1.. (ii) Source-graph has
all possible set of edges except self loop. (iii) The weight matrix
W of the source-graph is computed following the equation
of Gaussian kernel on both the parameters - data and hop
count (i.e. prior information). With respect to our objective of
finding anomaly in dataset, the correlation coefficient carries
proportional relationship between the vertices whereas the
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distance metric carries reciprocal relationship. This is because
an increase in minimum distance decreases the possibility of
exposing similar behavior by the vertices in G. Therefore,
the weight matrix of the source-graph is computed as follows:

(1- [Ilp(i,j)||1]+)2)
AZ

([P (i, ))+)>?
HE)

Whgk¢j=£xp<-—

X exp<—

where [|lo(i. j)lI1]+ equals [lp(i, )11 if lo(i. §)ll1 > .. and
equals unity otherwise; [h(i,7)]+ equals h(i, j) if h(i, ) < Oy,
and equals zero otherwise; if both the conditions are violated
then we set the value of w; ; equals 0; 6. and 6, are constant
thresholds; A, and A, are the _parameters determining the
rate of exponential decay; and & represents the normalized
h. We perform normalization by dividing with the maximum
value of h(i,7) in the distance matrix computed for all set of
vertices in the graph G'1,. We constrain the diagonal elements
of W equals zero as the source-graph does not have self loop.
Further, we compute the diagonal degree matrix D in which
dii = > ey w(i, j) indicates the degree of i jth vertex in V.
Note that this step corresponds to function F» in Equation (2).

15)

V. EXPERIMENTAL SETUP

We use the proposed method to solve the problem of unsu-
pervised detection of traffic anomalies in computer networks,
for which PCA and other extensions have been used so far. In
particular, we consider volume anomaly in network traffic.

1) Datasets: We evaluate the performance of the proposed
scheme with sate-of-the-art schemes for real network datasets
and synthetic datasets.

A) Real Dataset Abilene: We consider the real Abilene
network dataset which is a multivariate timeseries of OD
flow traffic collected from the Abilene Internet2 backbone
network. Abilene network has 11 point-of-presence (PoP) and
spans across the universities in United States. The traffic is
measured in #bytes from every PoP (i.e. router). The sampled
flow data of Abilene was collected for a period of three weeks.
Sampling was done randomly to capture 1% of all packets
entering every router. Using the Juniper’s Traffic Sampling
[62], the sampled packets were aggregated for every minute
by comparing 5-tuple information in IP-flow level. The 5-tuple
was defined as source and destination IP addresses, two port
numbers, and used protocol type. The #bytes in each sampled
IP-flow were recorded for generating the data set. Finally, for
avoiding synchronization issue, that could have arisen in the
data collection procedure, the data was aggregated in 5 minute
bin. Therefore, we have 2016 (= 7 days x 24 hours x 60 min /
5 min) samples in every week dataset. The traffic exchanged
between OD pairs actually enters the network at a given ingress
PoP and exits at another PoP. Those ingress and egress PoPs
are identified by inspecting the router configuration files, and
the BGP and ISIS routing tables [63], respectively. In brief,
the collected dataset has 121 OD flows and 2016 samples.
However, the flow-level data is not the input to our algorithm,
but used for validation purpose. Our technique operates on link-
level data. Therefore, we convert the dataset from flow-level to

link-level. Figure [3(a)] shows the directional links in the Abilene
network. Let the link-flow matrix is denoted by A of size (#
links) x (# flows), and the sampled OD flow dataset by C of
size (# flows) < (# samples). Then, the matrix of traffic counts
on links is computed as X = AC. The Abilene network has
41 directed links, and, thus, the input dataset is X € R*1*2016,

B) Synthetic Dataset Abilene: We also have generated
synthetic data using the Abilene network dataset and topology
information. In this approach, we inject synthetic anomaly into
the real traffic after performing some pre-requisite operations
on the real datasets. With synthetic dataset, we are able to test
our methods for various anomalous time-stamps and anomaly
patterns to mimic different types of volume anomaly such as
DDoS attack, alpha event and outrage. We use volume anomaly
spreading on 5% of total samples. We generate the anomalous
traffic by using a multiplicative factor S which is multiplied
with original signal for the selected anomalous time duration.
Generally the values of 3 remains in between 0 and 2.5 to
mimic a variety of different volume anomaly [61]]. In this work,
we have considered 5 = 2. Further, the initial rise and the
fall of traffic at the ending of volume anomaly is simulated
by an exponential ramp shape. We randomly selected the flow
#50 for injecting synthetic anomaly. All the remaining flows
carry normal traffic. Thereafter, we follow the same approach
to convert the flow-level traffic to link-level traffic as described
for real dataset of Abilene network.
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(a) Original signal: Abilene flow #50.
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(b) Smoothed signal by Wavelet transform.
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Fig. 4: Synthetic dataset: Anomaly injection procedure in Abilene
(50th flow). Note that the vertical axes have different scales.
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In this juncture, we explain the pre-requisite operations
which we perform on the real dataset before injecting synthetic
anomaly into it. An example of the overall procedure is
explained in Figure [] in which we consider the flow #50
for injecting anomaly. Figure [d(a)] shows the original OD
flow #50, and the Figure f(b)| shows the extracted long-term
statistical trend of the signal by smoothing the original OD
flow. Similar to previous works (e.g. [61], [60]), we perform
signal smoothing by Wavelet approximation of the signal. We
add the Gaussian noise with SNR= 20dB as shown in Figure
onto the de-noised smoothed signal. The resultant signal
is shown in Figure [4(d)] Finally, we inject anomalous signal,
shown in Figure 4(e)] to generate the anomaly-injected synthetic
signal as shown in Figure We follow the same process
except the anomaly injection step for the rest of the flows of
Abilene network datasets. Thus, we get three synthetic datasets
corresponding to three real datasets of Abilene networks.

C) Real Dataset RSS: We use another real dataset collected
using wireless sensor network (WSN) randomly deployed inside
and outside a laboratory at the University of Michigan [64]]. In
total 14 sensor nodes were deployed, and they communicated
with each other asynchronously by broadcasting RF signal.
Every receiver measured the received signal strength (RSS)
which has been recorded. During this experiment, the university
students walk into and out of the lab which is treated as anomaly.
The timestamps of occurring such anomaly were recorded using
an web camera by which the gound truth was determined in
the dataset. The RSS measurements were collected over a 30-
minute period, and each sample was acquired in every 0.5 sec.
The dataset has been synchronised using interpolations and
the temperature drifts has been removed. In total, there are
3127 measurements. As the experiment uses mesh topology
in communication, we have 14 x 13 = 182 dimensional data
samples. However, we set a minimum threshold value for
capturing the RSS, and, thus, we have less number of edges
than the fully connected network graph. Finally, we take the
mean of measured RSS values by each node at every timestamp
for generating the desired dataset X € R4*3127 where the
dimension of each sample is 14.

D) Real Dataset SWaT: We use one more real dataset
systematically generated from the Secure Water Treatment
(SWaT) Testbed at iTrust, Centre for Research in Cyber
Security, Singapore University of Technology and Design
[65]. The data was collected from the testbed for 11 days
of continuous operation — 7 days with normal operation and
4 days with attack scenarios. The dataset consists of all the
values obtained from all the 51 sensors and actuators available
in SWaT. During the data collection process, the data samples
were labeled according to normal and abnormal behaviours. In
this work, we have only consider one type of attack scenario
out of 36 types of attacks performed in 4 days, and we don’t
have any graph structure relationship among the sensors and
actuators. Therefore, the collected dataset was X & R51x10000
After doing some pre-processing, we get the desired mean
removed SWaT dataset X € R37%10000 here the dimension
of each sample is 37.

2) Data Preprocessing: In this paper, we pre-process all the
three real datasets to zero mean and unit standard deviation

10

along the features. We perform the same after introducing
synthetic anomaly and Gaussian noise for synthetic anomaly
datasets.

3) Anomaly Detection Metric: For evaluating the anomaly
detection performance of the proposed model as well as the
the benchmark models, similar to previous works (e.g. [8],
[277]), we rely on the separation of link traffic into normal and
abnormal components. This is done based on the concept of
subspace-based detection [8]]. The basic idea of subspace-based
detection is to determine the normal and abnormal subspaces
followed by the projection of link traffic onto the subspaces.
After the projection of data onto the subspaces, we compute
anomaly detection score. We compute the orthogonal projection
matrices O,, and O, corresponding to normal and abnormal
subspaces decided by the reduced dimension k. Thereafter, we
measure the anomaly detection score for each data instance
as follows: ¢ = [|Onz;|3 — [|Oazi|3, where z; = i is
the i*" column of normalized data matrix Z € RP*"™ computed
from X. In general, the anomaly score greater than a threshold
indicates the occurrence of network anomaly at that instance.
In order to show the overall performance of each detection
method, different thresholds are chosen to generate the receiver
operating characteristic (ROC) curve and the area under the
curve (AUC) score. The ROC curve plots the true positive
rate against the false positive rate at various discrimination
thresholds.

4) Parameter Selection for SLCA: In Table we mention
the range of parameter values used for searching the optimal
set-up in each model. We followed the grid search methodology
for finding the optimal grid point of the data grid as shown in
the Table For example, we use the data grid {k,0.,05,0,7}
for SLCA. We search optimal set up for each model-dataset
pair. For each model-dataset pair and their corresponding data
grid, we compute average AUC score at every grid point by
following 10-fold cross validation procedure. Finally, we select
the grid point which produces maximum AUC score as optimal
set-up for that model-dataset pair.

VI. VALIDATION

In this section, we evaluate the performance of the proposed
model and compare with the other benchmark methods for the
Abilene dataset as well as three synthetic datasets.

A. Using Real Dataset: Abilene

We consider the real datasets collected from Abilene network,
which is the standard dataset for the volume anomaly detection
problem [8]]. We evaluate the anomaly detection performance
for all the benchmark models and the proposed models as
mentioned in Table [I| Specifically, we compare with the
following standard and state-of-art subspace analysis methods:
PCA, Locality Preserving Projections(LPP) [15], Robust PCA
(RPCA) [4], Robust PCA on Graph (RPCAG) [2], Fast Robust
PCA on Graph (FRPCAG) [3], and Graph Laplacian PCA
(GLPCA) [1]]. Note that RPCAG and FRPCAG are state-of-the-
art improvements of PCA using spectral graph regularization.
Table shows a comparative analysis on the average value
of AUC scores and their corresponding standard deviation. We

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2018.2818950, IEEE
Transactions on Signal and Information Processing over Networks

11

TABLE III: Range of parameter values for each of the models considered in this work, and the process of tuning those parameters. Note
that for LCA and SLCA, we have also experimented using the default feature graph computed the same as FRPCAG [3], and in such case

the graph parameters (0, 0n, A., Ap) are not needed.

Model Parameters Parameter Range

Graph Optimization
PCA k k€{2,3,...,min(n,p)}
LPP [15] knn knn = 10
RPCA [4] 5 s c { =1 >—3 510 }
RPCAG [2] knn,oq 4, Y1 \/nlaz(n p)’ \/maz(n.p)7 ’ \/nzam(n,p)
FRPCAG [3] knn,o1,02 Y172 Y1,72 € {2 ;272 210}; 01,02 = 1; knn = 10
GLPCA [1] knn k., v1 1 = [ using tramformation, B € {0.1,0.2,...,09}, k €

{2,3,...,min(n,p)}, knn = 10

LCA (this work) 0., 0n, A, Ay, v, k A=A, =1,0, € {I:1:5}60. € {0.T:0T:

SLCA (this work) 0., 0n, Ao, AL 5,7, k 1} k € {2,3,...,min(n,p)}; v € {0.002 : 0.002 :
1361 € (le— (10 : 1 : 18)); 6; € {0.01 : 0.01 :

1} forallj# 1

L
¢
TABLE 1IV: Comparison of average AUC score, Standard Deviation o
(S.D.) in 10-fold AUC, reduced dimension k (i.e., size of the normal Z
subspace), and optimal model parameters for the different models g
using 10-fold cross validation procedure on Abilene dataset of three s
weeks. Note that, for each models, k is chosen to achieve the optimal =
AUC.
. ' o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
(a) Using Abilene dataset of 15¢ week. 0 01 02 03 04 05 06 07 08 09 1
Model Avg. S.D. k Optimal parameter values False Positive Rate
AUC AUC (a) Using the dataset of 1°¢ week.
PCA 76.19 0.169 4 k=4
LPP 65.23 | 0.246 5 k=5
RPCA 72.35 | 0.221 10 5 = 0.45 1
RPCAG 73.51 0.245 6 6 = 0.0445,~ = 27
FRPCAG | 76.54 0.145 20 ~v1 = 0.0625,v2 = 0.5
GLPCA | 71.68 | 0.218 15 E=153=05 0.8
LCA 8504 | 0.107 | 27 | E=27,0, =0.2,0, = 1,7 = £
0.04 X 6
SLCA 87.10 0.103 18 k=18,0, = 03,0, = 3,y = 2
0.02,6; = 0.01,6; = le — 17 g o e
a - ——LPP
(b) Using Abilene dataset of 2% week. g —>*—RPCA
= —+— RPCAG
Model Avg. S.D. k Optimal parameter values =02 — o—rrreac| |
AUC AUC —<&— GLPCA
PCA 64.54 0.285 3 k=3 0 A A !
LPP 72.71 0.195 6 k=6 0 0.2 0.4 0.6 0.8 1
RPCA 54.26 | 0.270 9 5 =0.7 False Positive Rate
RPCAG 63.10 0.218 35 6 =0.0891,~ = 25 . d
FRPCAG | 65.49 0.184 8 1 =4,72 =05 (b) Using the dataset of 2™ week.
GLPCA | 54.94 | 0.277 5 | k=15,8=0.9
LCA 80.06 0.158 22 k=22,0,=02,0, =2,v=
0.014 1
SLCA 82.64 0.113 24 E=24,0, =0.2,0, =2,v
0.004, 617001 61:16—17 08 F
2
(c) Using Abilene dataset of 374 week. g 06 -
Model Avg. S.D. k Optimal parameter values g '
AUC AUC = e itiA
PCA 55.08 | 0.172 5 k=5 g 04 —o—LpP ]
LPP 49.55 | 0.136 40 k = 40 g — % RPCA
RPCA 49.18 | 0.224 13 5 =0.2 E o2 —+—RPCAG | |
RPCAG | 54.68 | 0.176 8 5 = 0.0445, = 27 —6— FRPCAG
FRPCAG | 59.69 | 0.107 19 | 41 = 0.125,v5 = 1 ) —9—GLPCA
GLPCA 49.20 | 0.225 20 k=24,=0.5 0 ! ; !
LCA 7384 | 0.158 | 21 | k=21,0,=02,0, =2,7 = 0 02 o4 06 08 1
0.012 False Positive Rate
SLCA 74.34 0.124 15 ’g 0=1i5(§ Oc =0(())23,69h =12e’ 71=7 (c) Using the dataset of 3% week.
-014,90; = 0.02,0, = le—

Fig. 5: Comparison of ROC curves under the different models using
10-fold cross validation on Abilene datasets of three weeks
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TABLE V: AUC score comparison using the default feature graph
and our dual-input feature graph i.e. source-graph

Dataset Graph Type LCA SLCA
157 week Standard Feature Graph [3] 83.98 86.35
Source-Graph 85.04 87.10
2nd week Standard Feature Graph [3] 79.77 82.50
Source-Graph 80.06 82.64
374 week Standard Feature Graph [3] 68.38 70.58
Source-Graph 73.84 74.34

capture the average AUC score using 10-fold cross validation
process. We run the experiment for three sets of data captured
in Abilene network for three weeks. The results for the
three weeks datasets are shown in Tables and
respectively. We also show the reduced dimension size
corresponding to each model under each dataset. The optimal
parameter values corresponding to the presented AUC score
are shown in the last column of each table. We observe that
both the versions (LCA and SLCA) of the proposed model
outperforms all the existing benchmark models for the real
datasets of Abilene network. It is pertinent to mention that
the performance of SLCA is better than LCA, as the sparse
components are smoother than their non-sparse counterparts.

Figures[5(a) [5(b)] and show the comparison on ROC curve

for all the three real datasets of Abilene network, respectively.

The figures once again demonstrate better accuracy on true
positive rate with respect to a certain false positive rate.

To understand the effect of the proposed source-graph,
we compare the AUC score computed using the proposed
models under the standard feature graph [3] and our proposed
source-graph. The result is shown in Table [V] Once again the
result validates that the traffic measurements are smoother
with respect to the source graph compared to the default
feature graph. Importantly, when comparing Table [TV] and [V}
we observe that LCA / SLCA can outperform previous work
when using the standard feature graph, demonstrating that our
proposed LCA and SLCA are superior in subspace analysis.
The use of source graph leads to further improvements.

TABLE VI: Comparison of average AUC scores under different
models for the synthetic Abilene datasets using 10-fold cross validation
experiment.

Model 15% week 279 week 37 week
PCA 61.27 61.60 66.62
LPP 58.89 58.94 57.50
RPCA 61.43 51.87 50.50
RPCAG 52.52 58.29 60.06
FRPCAG 60.33 53.55 60.31
GLPCA 61.99 50.27 50.23
LCA 71.80 67.69 70.16
SLCA 77.48 87.16 73.57

B. Using Synthetic Dataset: Abilene

We also perform comparison using the synthetic datasets. As
we have created the synthetic datasets from the real Abilene
network datasets, we also use the Abilene network topology
in this experiment. In the experiments, we varied the detection
threshold to generate ROC curve for all the models. The results
are plotted in Figure [} We observe that the proposed models
outperforms the benchmark methods for all the three synthetic
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(c) Using the dataset of 37d week.

Fig. 6: Comparison of ROC curves under the different models using
10-fold cross validation on synthetic datasets of three weeks

datasets. To understand the improvement, we computed AUC
score using the same parameters for individual methods as
shown in Table [IIl The summarized result of AUC score is
presented in Table [VI, which suggests our proposed LCA and
sparse LCA outperform other methods.

C. Using Real Dataset: RSS,SWaT

We performed the above experiments using two more real
datasets - RSS and SWaT. In the experiments, we varied the
detection threshold to generate ROC curve for all the models.
The received results are plotted in Figure [7] It is important
to mention that, we used the present network graph as prior
information in the experiments using RSS dataset. Therefore,
we were able to construct the source graph corresponding to

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2018.2818950, IEEE

Transactions on Signal and Information Processing over Networks

TABLE VII: Comparison of average AUC score, Standard Deviation
(S.D.) in 10-fold AUC, reduced dimension k (i.e., size of the normal
subspace), and optimal model parameters for the different models

using 10-fold cross validation procedure on RSS and SWaT datasets.

Note that, for each models, k is chosen to achieve the optimal AUC.

(a) Using RSS Dataset.

Model Avg. S.D. k Optimal parameter values
AUC AUC

PCA 49.47 0.052 1 k=1

LPP 49.12 0.075 12 k=12

RPCA 49.07 0.048 14 6 = 0.305

RPCAG 43.43 0.039 4 6 = 0.0358,7v =8

FRPCAG | 53.05 0.062 14 v1 =1,72 =0.5

GLPCA 48.83 0.032 35 k=3,8=0.6

LCA 55.76 0.054 6 k=6,0. =04,0, =2,v =
0.004

SLCA 61.98 0.043 10 k=10,0, =04,0, = 1,7 =
0.04,6; = 0.03,6; = le — 17

(b) Using SWaT Dataset.
Model Avg. S.D. k Optimal parameter values
AUC AUC

PCA 54.76 0.019 3 k=3

LPP 57.01 0.059 8 k=38

RPCA 54.31 0.028 14 6 = 0.105

RPCAG 55.63 0.019 26 6 =0.04,7y=0.5

FRPCAG | 54.66 | 0.013 7 =1, =2

GLPCA 56.02 0.023 3 k=3,8=0.5

LCA 63.39 0.017 5 k =5,y =0.032

SLCA 62.97 0.026 8 k = 8~ = 0.24,6; =
0.012,6;, = le — 17

True Positive Rate

0 01 02 03 04 05 06 07 08 09 1
False Positive Rate

(a) Using the RSS Dataset.

True Positive Rate

0 01 02 03 04 05 06 07 08 09 1
False Positive Rate

(b) Using the SWaT Dataset.

Fig. 7: Comparison of ROC curves under the different models using
10-fold cross validation on RSS and SWaT datasets

RSS dataset. However, such prior information is not present for
the SWaT dataset, and, thus, we used standard feature graph
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[3] for constructing the graph Laplacian and applying it in
the proposed model. We observe that the proposed models
outperforms the benchmark methods for both the datasets.
We also computed the optimal AUC score under individual
methods. The optimal results are shown in Table [VII] which
once again supports our claim the LCA and SLCA outperform
other methods irrespective of prior information graph.

VII. CONCLUSION

Different from previous works that either uses spectral graph
regularization or uses first k eigenvectors of sample graph
Laplacian, our work uses the first £ smooth eigenvectors of
the normalized dual-input feature graph Laplacian to impose
graph smoothness on the low-rank data matrix. Moreover, we
propose to use a regression-based optimization framework
to compute these eigenvectors (Laplacian components, LCs).
The framework allows us to add the lasso penalty and
achieve LCs with sparse loadings. Furthermore, we exploit
the inclusion of prior information in computing the LCs within
the framework. Experiment results suggest that the proposed
method is superior in identifying the essential low-dimensional
subspace from real/synthetic Internet traffic, compared to
other state-of-the-art. The regression framework is flexible
in incorporating other regularization of LCs. Future work
investigates the improvements of these variants and application
of the framework for other data with hidden graph structure:
brain signals [66], transportation network data.
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